USN											
-----	--	--	--	--	--	--	--	--	--	--	--

Eighth Semester B.E. Degree Examination, June / July 2013 **Advanced Computer Architecture**

Max. Marks:100 Time: 3 hrs.

Note: Answer any FIVE full questions, selecting atleast TWO question from each part.

PART - A

- a. Define Computer Architecture. Illustrate the seven dimensions of an ISA. (08 Marks) 1
 - b. Assume a disk subsystem with the following components and MTTE.
 - 10 Disk, each rated at 1000000 hours MTTF 1 SCSI controller 500,000 ii) hours MTTF iii) 1 power supply 200,000 – hours MTTF iv) 1 Fan 200,000 -1 SCSI cable 1,000,000 - hours MTTF. Using the simplifying . v) hours MTTF assumptions that the life times are exponentially distributed and that failure are independent. Compute the MTTF of the system as a whole. (04 Marks)
 - c. We will run two applications on this dual Pentium but the resource requirements are not equal. The first application needs 80% of the resources and the other only 20% of the resources.
 - Given that 40% of the first application is parallelizable, how much speed up would you achieve with that application if run in isolation?
 - ii) Given that 99% of the second application is parallelizable, how much speed up would this application observe if run in isolation?
 - iii) Given that 40% of the first application is parallelizable, how much overall system speed up would you observe if you parallelized it?
 - iv) Given that 99% of the second application is parallelizable, how much overall system (08 Marks) speedup would you get?
- What is pipelining? List pipeline hazards. Explain any one in detail. (10 Marks) 2
 - With a neat diagram, explain the classic five stage pipeline for RISC processor. (10 Marks)
- a. Mention the techniques used to reduce branch costs. Explain static and dynamic branch 3 (08 Marks) prediction used for same.
 - b. What is data dependencies? Mention the different types of data dependencies. Explain Name dependencies with example between two instructions. (06 Marks) (06 Marks)
 - c. What is correlating predictors? Explain with examples.

- Explain the basic VLIW approach for exploiting ILP using multiple issues. (08 Marks) a.
 - Write a note on value prediction.

(04 Marks)

c. Mention the key issues in implementing advanced speculation techniques. Explain.

(08 Marks)

PART - B

- Explain any two hardware primitives to implement synchronization, with example. 5
 - (10 Marks)
 - b. Explain the basic schemes for enforcing Coherence in a shared memory multiprocessor (10 Marks) system.
- Briefly explain four basic Cache optimization methods. 6

- b. Assume we have a computer where the Clocks Per Instruction (CPI) is 1.0. When all memory accesses hit in the Cache. The only data accesses are loads and stores and these total 50% of the Instructions. If the miss penalty is 25 clock cycles and the miss rate is 2%. How much faster would the computer be if all the Instructions were Cache hits? (10 Marks)
- 7 a. Which are the major categories of advanced optimization of Cache performance? Explain any one in detail. (10 Marks)
 - b. Explain internal organization of 64MB DRAM, with neat figure.

(05 Marks)

c. Briefly explain how memory protection is enforced via virtual memory.

(05 Marks)

8 a. Explain in detail the hardware support for preserving exception behavior during speculation.

(10 Marks)

b. Explain Intel IA – 64 Architecture.

(10 Marks)